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Abstract. The tensor product of twd/,s/(2) modules,q a root of 1, is decomposed into
indecomposable summands for both irreducible imadécomposablenodules. Clebsch—Gordan
coefficients in the general case are computed. An apparently new identity is derived and some
possible applications are conjectured.

1. Tensor product decomposition

This paper follows on from [1] (referred to as I) on the structural theory of a class of
nonsemisimple Hopf algebras. Here we focus on tensor products of modules. In particular,
we derive a complete result on tensor product decomposition oftiyyd(2)-modules,g a

pth root of 1 for some odg. The Clebsch—-Gordan (CG) coefficients in the general case of
U,sl(2) indecomposable modules are also computed. As to be expected they have a rather
complicated structure. First we fix some notation and choice of basis. We use the standard
symbols and formulae (see 1) for the generator§ ofl (2) and its bialgebra structure. L#},

denote the irreducible module generated by a singular vegtof weightg™, m < p —1. Let

0, denote the projective indecomposable module (p.i.m.) generated by a ygoforeight

¢~ ". The following basis foQ,, will be chosen. Let

Enfl
o, = m *Vn- (l)
Then
F* F®
F(k)an = 07 *Yn

n and —
[k !
form a basis forQ,. Furthermoreg, and F"~Y . o, are E-singular vectors irQ,,. We call
these parent and daughter, respectively. We have

Eyn = F(n_Z)an (2)
+k —
EF®y, =[1—k —n]F&D .y, + [n ]]i 2:| Fot=2g (3)
The following result is known. With the notation as above
min{(m+n),2p—m—n—2} m+n+2—p
Vm ® Vn = @ Vk @ Xr (4)
k=|m—n|,+2,+4,... r=s,s+2,...
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wherer = 1if m +n — p odd, otherwise = 2 andX, is Q, if r > 2 andX,; = P.

As for the tensor product of typ@,, ® V,, or Q,, ® Q, itis only known that they are the
sum of P andQ,,’s. This follows easily from the analysis of | since it is known tliat and
P are the only p.i.ms and since projectigeanything is projective. Our aim in this section is
to determine exactly which p.i.m. occur in the product. It is seen from the stuct@r¢ afd
a simple consideration of dimensions that the total number of indepefdsingular vectors
in 0., ® V, equals 2n + 1). If there arek summands of type and- summands of) type
then Z +r = 2(m +1). Our strategy is to find a set of singular vectors first and then pair them
in different Q,,. As we see below this is not so straightforward. We suppress the subscript
for convenience.

Let « andy be generatorg), with o a singular vector as in the last paragraph. Let

be the singular vector ift,,. Consider aK -eigenvectorpy in the product with eigenvalue
m+n—2(N+1)_ Let

q
N N—n+l
oN = chF(k)(x Q FNhPy g Z d,F®y @ FN=1=s+Dy (5)
k=0 s=0
@y is a singular vector if and only if the following recursion relations hold
[n—k — e = —¢" 28V m — N + k + 1]k k<n-2 (6)
[S + n]ds+l = q_(n+ZS)[m —N+s+ n]ds (7)
[S]Cn+.v—l - |:7’l " SY B 2] dy = 617(“2572)[’” —N+n+ts— 1]Cn—2+s- (8)

Before solving these equations let us make some observations which follow as very simple
consequences. Firgly o< ¢,_2 and ifdg (hence alll; = 0) thenc; = Ofork < n—2. Thuswe
get two sequences of singular vect¢§\§ which start witho andwﬁ) starting withF D in
the first factor. In the case @15\,2) the above relations are slightly modifiehit-n < N < m.
In that casel,_,+1 o b,—, Wwhereb, = c¢,_2+. In any case it is seen that there are precisely
2(m + 1) singular vectors. One writes the singular vectors and then determines which ones
pair up. A singular vectorpy, with weightg*=2, k = m +n — 2 — 2N pairs with another
singular vectorg,,, with weightg =% andgy o« F¥*1. ¢y. However, ifk exceeds then we
must takek mod p and for the case whekels negative we may need to consiger k. Thus,
the weight table alone is not sufficient. It may be checked whethetescends fromyy and
this can be done by comparing the ratio of coefficients given above. Furthermore in (5) the
coefficientscg andc,_; are arbitrary. Note that,_; appears only ifn > n — 2. Moreover, if
N>n-1 thenrp](\,l) is not unique since a singular vector from the second class can always be
added to the former. We now have the following result.

Lemma 1. The coefficients, andd, of the first series of singular vectogs, (starting with
«) are given by
= (1) [m—N+k]'[n—2—k]' 0 ;1

[n— 2][m — N] k<n-2 ©)
o amealm = NAs+n =1[n 1] _ .
=D [s +n — 1]'[m — N]! o (10)
and
[m—=N+n+s—1' _ . | <
Cp—1+s = [S]l q s(rts—1) Z Vsr (11)
) r=0
where

Cn-1

YO = I N +n—1]
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and
. [n —1]
Yor = n =21 [m — NI[[n — L +7]

CQ.

We are now in a position to state the general theorem on tensor product decomposition.
One uses the structural results of | to see which singular vectors pair up.

Theorem 1. Let 0, andV,, be as above.

(1) Letm +n < p and consider two cases separately.
() m <n-—2,then
Qn ® Vm = Qm+n—2 ® Qm+n—4 ©® Qm+n—6 D---D Qn—2—m~ (12)
(i) m=n—-2+r,r > 1,
Qn ® Vi = Qm+n—2 @ Qm+n—4 @ e Qr @ 2Qr—2 @ 2Qr—4 EB ot ZQZ(ZP) (13)
where the modul@ occurs ifm + n is odd. The number 2 denotes multiplicity.
(2) m+n = p+r,r > 1. Here we also consider two cases.
i) m<n-2
Qn 02y Vm = 2Qr @ 2Qr—2 D---D 2Q2(2P)
Ganfr @ Qp7r72 e---D anmfz (14)
(i) m=n—2+s
Qn ® Vm = 2Qr @ 2Qr72 DS---D 2Q2(2P) @ 2Qm7n ® 2Qm7n72 - D 2Q2(2P)
@Qp—r—Z ©® Qp—r—4 ®-D Qm—n+2~ (15)
Itwas assumedthat < p—2. Forthe special case there is slight modification in the formulae.
We illustrate the intricate behaviour by a visual presentation of the relationships. Recall
that we have two serigs”), i = 1, 2 of singular vectors. These two are written in columns
according to the eigenvalues oféh The descendants are on the right or below and shown by
an arrow between the two columns and the kinships within a column are indicated by brackets.
The @ series is on the right. We demonstrate only for the cases (1)(i) and (2)(ii). For (1)(i)
we have the following:
1 m+n—2 — —(m+n) F™
F m+n—-4 — —(m+n—-2) Fm1

F" n—m—-2 — m-—n 1
For (2)(ii) the kinship diagram is given below. Note that the columns within square brackets
are paired by nested brackets efgand F" 2.
1 p+r—2 - m+n—2p—2 Fprtl
F p+r—4 . m+n—2p—4 Fpr2

F'2 p—r+2 - —(m+n-—2) Fpr—mr—1
_F”1 p—r - —(m+n) Fp—mir
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F' p—-r—-2 — —(p—r) Fr—n
F*' p—r—-4 — —(p—r—-2 Fr71

F'2 m—n+2 — —(m—n+4) Fn1+2

F'" 1 m—n m—n 1
F" m—n-—2 m—-—-n—2 F

Fm1 n_m n—m Fmn
Fm n—m-—2 n—m-—2 Fml

The result on tensor product of tw@-type is as follows.

Theorem 2.
P
Qn ® Qm =4P @ Z4Qr
r=2

The kinship diagrams in this case are complicated. In any case the diagrams above are the
starting point for deriving CG coefficients in the general case.

2. CG coefficients

In this section we calculate the CG coefficients for the prodyc® V,,. These coefficients are
known for the producV; ® V,, [2]. From lemma 1 and theorem 1 we see that the cases (1)(ii)
and (2)(ii) are relatively complicated as they involve the genergtoiVe consider only the
case (1)(ii), the others can be handled similarly. Note that the modylese not generated

by the singular vectors alone. We need to know the correspongdinthus letn +n —1 < p
andm >n — 1. ForeachV < m, letM = m +n — 2N anday, be the corresponding parent
singular vector. The modul@,, is generated bw,, and the respective,,. Our first task is

to computey,,. Since we are dealing with singular vectors from the first series we yxiﬂ@ﬁe
ForM > 2 let

N N—n+1
oy = Z i FPoq @ FN Py + Z d,F®y @ FN-m1=9y (16)
k=0 s=0
Then with
a=max0,m+n—2—N)
M+N-2 M+N—n—1
F(M—2) oy = Z gsF(s)a ® F(M+N—2—x)x + Z hSF(s)y ® F(M+N—n—1—s)x (17)
s=a s=0
where
s
_ s M+N—-2-s5 (s—r)(n—2—r—s)
gLl
and

— - s m—N—s —(s—r)(n+r+s)
hs_XO:dr[rill:N—n—r+l:|q ’ (19)
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Note that if we replacés by M + 1 in (17) then we get the corresponding daughter singular
vector. Comparing with the expressions (10) and (11) we obtain some summation formulae
one of which appears to be rather strange. | discuss this in the appendix. Returning to the
generatoty,, let

M+N-1 M+N—n

Z prFPa® FONTID 5 4 Z tFOy @ FMN==y, (20)

a+l 0
Now

E-yy =F"?.ay (21)
yields the following set of equations:
pen—r =11+ p,a[N —n+r+1]g" % =g,_1 for a<r<n-2 (22)
= L]t + [N +rltag™ 2D =,y (23)
+r—2

pn—l+r[r] — I |:n :_ :| - [N +r]pn—2+r = —8n-2+r- (24)

The solution of these inhomogeneous difference equations is straightforward. Thus

_ - r—a+l[N —n—1 +r]![n —2- r]| (r—s)(n—r—s—1)
=> (-1 N n Tesiin 15t Y g-1 r<mn—2 (25)

a+l

Z [N +r][n—2+k]! ==k (n=14r+k) p (26)
[N+K[r+n—1] —

with h_1 = [n — 1]tp and
to=gu2—q "?[Nlp.—2

00 = Pn-1
n+k—2 .
. k k — 8n—2+k 27)
[k]
N +r][A]!
Putr = Z [ ] [ ] k)(n—2+r+k+l)6k

[N+k]'[r]'

We are now in a position to calculate the CG coefficients. We fix some notation. Recall that
we are dealing with case (1)(ii) of theorem 1 when- n — 2 andm +n < p. Corresponding

to a moduleQy in the tensor product decomposition we still use the symigobndy, for the

two generators. There is no confusion since for the original modpjesndV,, we write the
respective generators without subscripts. Bet m +n — 2N andN + L =T, let

FD gy = Z CM,L,s,T —s)F®a @ FN*L=9x
s

+Y DM, L.s, T+1—n—s)FVy@ FN1mmy (28)
and
FOoyy =AM, L s, M+L—s5s—1)FYaq @ FM= Dy

+Y B(M.L,s. M+L—n—s)F®yg FM™y, (29)
From theorem 1 we see that the modut®s k = m —n +2,m — n, ..., 2 occur twice

corresponding to the two classes of singular vectors. We distinguish the singular vectors, CG
coefficients, etc, of the second class (those starting With*« in the first factor) by inserting
a prime.
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The coeffcientsC(M, L, _, ) etc, in the two equations above are the generalized CG
coefficients. FirsC andD are computed from the expressions (9)—(11) for the coefficients of
singular vectors. We can now state the following.

Theorem 3. The CG coefficients in the decomposition@f ® V,, into indecomposable
summands are as follows. With notation as abovedng m +n — 2N andT = N + L

CM,L,s, T —s)=q'¥ Z(_l)r I:i:| |:N+L —s] [m—N+r][n —2—r]!q_ryc0
0

N—r [n —2]/[m — N]!
(30)
with
X=L+2N —s—m and Y=L+2N+1—n—-m
and
N
DM,L,s,T+1—n—s)=(—1)""n — 1)g°**?>2 Zq_'(y+2) [s}
0 r
T+1l—n—s |[M+N+r—-1]!
X[N+1—n—r:|mco' (31)
To compute A and B we use expressions (25)—(27). Thus
1 _ . (s—r)U | $ M+L+N—-1-—5
AM,L,s, M+L+N —1 s)—;q [VH MAN—1_r |Pr (32)
with
U=L+2(M+N—-1)—m—r—s
and
N
o s—rU—2N+n-2)|S || M+L—n—s
B(M,L,s, M+L —n s)—ZO:q [r][ Mo |t (33)
The coefficients for the second class of p.i.mMoe=m —n +2 — 2N
/ 1 _ _sX —kY n—1+s
C'M,L,s,L+N+n—-1—5)=g¢q Xk:q [n—l+k]
L+N — —N+k
L] @
/ . _ (s—r)U | S M+L+N-—-1—5 /
AM,Ls, M+L+N—-1-8) =) g [rH MAN 1 ! (35)
with
R Jm—=N+r+1)[n—2—r]
pr=() ,;(_1) [m = N+k+ 10— 1— k) Pt (36)
and
— k(M—k+2N—m) —r(M+2N—min—1 | B —1+k || M+ N —k || m—N+k
ﬁk_q Zq [n_1+r k—r k . (37)

The CG coefficients can be put into a more tractable form and can often be identified with
some known functions like the basic hypergeometric functions. However, the formulae for
and B look rather formidable. Sincg@, can be obtained from the product of twaeducible
modules the coefficients derived above can be related ts@nbols coresponding to the
product of three irreducible modules. The structure of the tensor product of modules of higher
guantum algebras is much more involved. Only some partial results are known (see [4]) for
U,sl(3).
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3. An identity

We discuss some identities in this section. These can be derived from the fact that for a parent
singular vectorx,, in the productF¥—2 . ,, is also a singular vector and hence must be
proportional to a daughter singular vector. Identifying the latter from the diagrams in section 1
we obtain the required identity. In the cage= 0 in (5) we get the;-Saalschtz identity

[3]. However, ifd; # 0 then some apparently new identities appear. We mention one. Let
M=m+n—1—N:

"i(_l), [s} [M_s] [n—2—r] [m—N+r]!CO+ Z ([S} [M_s} (M +r]!

—~ r{|N—r [n—2]! [m — N]! r{|N—r [s]!

r=n—1
Cn—1 [n — 1]co . 1
X ([M]! = 2m = N k; K+ k — 1]))

[N+ (a b J 1
=T ([N]! FIN a1 ';[n—z]l[k][n_“k])‘

Herea andb are constants which can be determined easily. This identity can be proved
directly. First, one puts it in the form of a terminating basic hypergeometric series. The
first sumS; on the left-hand side can be identified with¢y series [3]. As for the second
sum S, the first part (without the inner sum) can be summég.s then transformed using
Sear’s formula [3]. The inner sum 8% is also modified so thaf, becomes the sum over two
independent indices. Then, by adding appropriate ternts ahd S,, we get the right-hand
side of the above identity. We omit the details. However, one wonders whether the proof
can be simplified. Unfortunately, due to limited knowledge of the basic hypergeometric series
the author was unable to do this. This identity seems to be new and more identities may be
deduced by considering the product of two indecomposable modules.

4. Discussion

As mentioned in | the indecomposable modules may describe some metastable or unstable
states. The generalized CG coefficients may then be used for the description of composite
systems. We note the following fact which seems physically obvious. The composite state
of two systems, one stable and the other metastable, is metastable. Moreover, note that
a small perturbation in the parametgrwill decompose the indecomposable module into
irreducible ones corresponding to stable states. The preceding discussion is admittedly vague
and conjectural but | feel that it may be put in more rigorous form by considering specific
models.
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